资源类型

期刊论文 349

会议视频 7

年份

2023 18

2022 23

2021 30

2020 22

2019 35

2018 18

2017 15

2016 11

2015 18

2014 13

2013 21

2012 16

2011 13

2010 24

2009 16

2008 11

2007 11

2006 8

2005 2

2004 8

展开 ︾

关键词

建筑科学 4

三塔悬索桥 2

人工智能 2

压力容器技术 2

大跨桥梁 2

工艺参数 2

机器学习 2

深度学习 2

结构健康监测 2

设计参数 2

2035年 1

3D打印 1

ARMA模型 1

ArcObjects 1

CAD/CAE一体化 1

FRP 聚合物 1

GIS 1

HY-2 卫星 1

MERS-CoV 1

展开 ︾

检索范围:

排序: 展示方式:

Experimental study of structural damage identification based on modal parameters and decay ratio of acceleration

Zhigen WU, Guohua LIU, Zihua ZHANG

《结构与土木工程前沿(英文)》 2011年 第5卷 第1期   页码 112-120 doi: 10.1007/s11709-010-0069-3

摘要: A novel damage assessment method based on the decay ratio of acceleration signals (DRAS) was proposed. Two experimental tests were used to show the efficiency. Three beams were gradually damaged, and then the changes of dynamic parameters were monitored from initial to failure state. In addition, a new method was compared with the linear modal-based damage assessment using wavelet transform (WT). The results clearly show that DRAS increases in linear elasticity state and microcrack propagation state, while DRAS decreases in macrocrack propagation state. Preliminary analysis was developed considering the beat phenomenon in the nonlinear state to explain the turn point of DRAS. With better sensibility of damage than modal parameters, probably DRAS is a promising damage indicator in damage assessment.

关键词: damage assessment     decay ratio of acceleration signals (DRAS)     wavelet transform (WT)     modal analysis     reinforced concrete beam     beat phenomenon    

Approximation of structural damping and input excitation force

Mohammad SALAVATI

《结构与土木工程前沿(英文)》 2017年 第11卷 第2期   页码 244-254 doi: 10.1007/s11709-016-0371-9

摘要: Structural dynamic characteristics are the most significant parameters that play a decisive role in structural damage assessment. The more sensitive parameter to the damage is the damping behavior of the structure. The complexity of structural damping mechanisms has made this parameter to be one of the ongoing research topics. Despite all the difficulties in the modeling of damping, there are some approaches like as linear and nonlinear models which are described as the energy dissipation throughout viscous, material or structural hysteretic and frictional damping mechanisms. In the presence of a mathematical model of the damping mechanisms, it is possible to estimate the damping ratio from the theoretical comparison of the damped and un-damped systems. On the other hand, solving the inverse problem of the input force estimation and its distribution to each SDOFs, from the measured structural responses plays an important role in structural identification process. In this paper model-based damping approximation method and a model-less structural input estimation are considered. The effectiveness of proposed methods has been carried out through analytical and numerical simulation of the lumped mass system and the results are compared with reference data. Consequently, high convergence of the comparison results illustrates the satisfactory of proposed approximation methods.

关键词: structural modal parameters     damping identification method     input excitation force identification     Inverse problem    

Identification of structural parameters and boundary conditions using a minimum number of measurement

Ali KARIMPOUR, Salam RAHMATALLA

《结构与土木工程前沿(英文)》 2020年 第14卷 第6期   页码 1331-1348 doi: 10.1007/s11709-020-0686-4

摘要: This article proposes a novel methodology that uses mathematical and numerical models of a structure to build a data set and determine crucial nodes that possess the highest sensitivity. Regression surfaces between the structural parameters and structural output features, represented by the natural frequencies of the structure and local transmissibility, are built using the numerical data set. A description of a possible experimental application is provided, where sensors are mounted at crucial nodes, and the natural frequencies and local transmissibility at each natural frequency are determined from the power spectral density and the power spectral density ratios of the sensor responses, respectively. An inverse iterative process is then applied to identify the structural parameters by matching the experimental features with the available parameters in the myriad numerical data set. Three examples are presented to demonstrate the feasibility and efficacy of the proposed methodology. The results reveal that the method was able to accurately identify the boundary coefficients and physical parameters of the Euler-Bernoulli beam as well as a highway bridge model with elastic foundations using only two measurement points. It is expected that the proposed method will have practical applications in the identification and analysis of restored structural systems with unknown parameters and boundary coefficients.

关键词: structural model validation     eigenvalue problem     response surface     inverse problems    

Comprehensive analysis of the influence of structural and dynamic parameters on the accuracy of nano-precision

Chengyuan LIANG, Fang YUAN, Xuedong CHEN, Wei JIANG, Lizhan ZENG, Xin LUO

《机械工程前沿(英文)》 2019年 第14卷 第3期   页码 255-272 doi: 10.1007/s11465-019-0538-x

摘要: Nano-precision positioning stages are characterized by rigid-flexible coupling systems. The complex dynamic characteristics of mechanical structure of a stage, which are determined by structural and dynamic parameters, exert a serious influence on the accuracy of its motion and measurement. Systematic evaluation of such influence is essential for the design and improvement of stages. A systematic approach to modeling the dynamic accuracy of a nano-precision positioning stage is developed in this work by integrating a multi-rigid-body dynamic model of the mechanical system and measurement system models. The influence of structural and dynamic parameters, including aerostatic bearing configurations, motion plane errors, foundation vibrations, and positions of the acting points of driving forces, on dynamic accuracy is investigated by adopting the H-type configured stage as an example. The approach is programmed and integrated into a software framework that supports the dynamic design of nano-precision positioning stages. The software framework is then applied to the design of a nano-precision positioning stage used in a packaging lithography machine.

关键词: nano-precision positioning stage     analysis and design     structural and dynamic parameters     dynamic accuracy     systematic modeling    

Stress-strain relationship with soil structural parameters of collapse loess

SHAO Shengjun, LONG Jiyong, YU Qinggao

《结构与土木工程前沿(英文)》 2008年 第2卷 第2期   页码 151-160 doi: 10.1007/s11709-008-0020-z

摘要: Through the tri-axial shearing tests of unsaturated intact loess and based on the concept of comprehensive soil structural potential, this paper reveals the changing laws of soil structural property under the tri-axial stress conditions and establishes a mathematical expression equation of structural parameters, whereby reflecting the effects of unsaturated loess water content, stress and strain states, which is introduced into the shearing stress and shearing strain relation to obtain the structural stress-strain relation. The tests reveal that the loess dilatancy is of shearing contraction and shearing expansion, whereby indicating that there is a good linear relation between the stress ratio and shearing expansion strain ratio. The larger consolidation confining pressure is, the larger the stress of shearing contraction and expansion critical point is; and the larger water content is, the smaller the strain ratio of shearing contraction and expansion critical point is. Finally, the constitutive model is established to reflect the variation in loess structure, stress-strain softening and hardening, and shearing contraction and shearing expansion features. Through the comparative analysis, the stress-strain curves described by the constitutive relationship are found to be in good conformity with test results, whereby testing the rationality of the model in this paper.

关键词: hardening     shearing expansion     unsaturated     structural property     mathematical expression    

Continuous dynamic monitoring of a centenary iron bridge for structural modification assessment

Carmelo GENTILE,Antonella SAISI

《结构与土木工程前沿(英文)》 2015年 第9卷 第1期   页码 26-41 doi: 10.1007/s11709-014-0284-4

摘要: A multi-channel continuous dynamic monitoring system has been installed in a centenary iron arch bridge on late November 2011. The historic infrastructure, completed in 1889 and crossing the Adda river about 50 km far from Milan, is the most important monument of XIX century iron architecture in Italy and is still used as roadway and railway bridge. The monitoring project follows a series of preliminary ambient vibration tests carried out on the bridge since June 2009. The paper describes the bridge structure and its dynamic characteristics identified from the experimental studies developed since 2009, the installed monitoring system and the software developed in LabVIEW for automatically processing the collected data. Subsequently, the tracking of automatically identified natural frequencies over a period of about 18 months is presented and discussed, highlighting the effects of environmental and operational conditions on the bridge dynamic characteristics as well as the detection of structural changes, mainly based on natural frequencies shifts.

关键词: automated modal identification     continuous dynamic monitoring     environmental/operational effects     iron arch bridge     structural health monitoring    

Effects of operational and structural parameters on cell voltage of industrial magnesium electrolysis

Ze Sun,Chenglin Liu,Guimin Lu,Xingfu Song,Jianguo Yu

《化学科学与工程前沿(英文)》 2015年 第9卷 第4期   页码 522-531 doi: 10.1007/s11705-015-1539-x

摘要: Electric field is the energy foundation of the electrolysis process and the source of the multiphysical fields in a magnesium electrolysis cell. In this study, a three-dimensional numerical model was developed and used to calculate electric field at the steady state through the finite element analysis. Based on the simulation of the electric field, the operational and structural parameters, such as the current intensity, anode thickness, cathode thickness, and anode-cathode distance (ACD), were investigated to obtain the minimum cell voltage. The optimization is to obtain the minimum resistance voltage which has a significant effect on the energy consumption in the magnesium electrolysis process. The results indicate that the effect of the current intensity on the voltage could be ignored and the effect of the ACD is obvious. Moreover, there is a linear decrease between the voltage and the thicknesses of the anode and cathode; and the anode-cathode working height also has a significant effect on the voltage.

关键词: finite element method     magnesium electrolysis cell     electric field    

Multidisciplinary co-design optimization of structural and control parameters for bucket wheel reclaimer

Yongliang YUAN, Liye LV, Shuo WANG, Xueguan SONG

《机械工程前沿(英文)》 2020年 第15卷 第3期   页码 406-416 doi: 10.1007/s11465-019-0578-2

摘要: Bucket wheel reclaimer (BWR) is an extremely complex engineering machine that involves multiple disciplines, such as structure, dynamics, and electromechanics. The conventional design strategy, namely, sequential strategy, is structural design followed by control optimization. However, the global optimal solution is difficult to achieve because of the discoordination of structural and control parameters. The co-design strategy is explored to address the aforementioned problem by combining the structural and control system design based on simultaneous dynamic optimization approach. The radial basis function model is applied for the planning of the rotation speed considering the relationships of subsystems to minimize the energy consumption per volume. Co-design strategy is implemented to resolve the optimization problem, and numerical results are compared with those of sequential strategy. The dynamic response of the BWR is also analyzed with different optimization strategies to evaluate the advantages of the strategies. Results indicate that co-design strategy not only can reduce the energy consumption of the BWR but also can achieve a smaller vibration amplitude than the sequential strategy.

关键词: bucket wheel reclaimer     co-design     energy-minimum optimization     sequential strategy    

Multi-objective genetic algorithms based structural optimization and experimental investigation of the

Pengxing YI,Lijian DONG,Tielin SHI

《机械工程前沿(英文)》 2014年 第9卷 第4期   页码 354-367 doi: 10.1007/s11465-014-0319-5

摘要:

To improve the dynamic performance and reduce the weight of the planet carrier in wind turbine gearbox, a multi-objective optimization method, which is driven by the maximum deformation, the maximum stress and the minimum mass of the studied part, is proposed by combining the response surface method and genetic algorithms in this paper. Firstly, the design points’ distribution for the design variables of the planet carrier is established with the central composite design (CCD) method. Then, based on the computing results of finite element analysis (FEA), the response surface analysis is conducted to find out the proper sets of design variable values. And a multi-objective genetic algorithm (MOGA) is applied to determine the direction of optimization. As well, this method is applied to design and optimize the planet carrier in a 1.5 MW wind turbine gearbox, the results of which are validated by an experimental modal test. Compared with the original design, the mass and the stress of the optimized planet carrier are respectively reduced by 9.3% and 40%. Consequently, the cost of planet carrier is greatly reduced and its stability is also improved.

关键词: planet carrier     multi-objective optimization     genetic algorithms     wind turbine gearbox     modal experiment    

An efficient two-stage approach for structural damage detection using meta-heuristic algorithms and group

Hamed FATHNEJAT, Behrouz AHMADI-NEDUSHAN

《结构与土木工程前沿(英文)》 2020年 第14卷 第4期   页码 907-929 doi: 10.1007/s11709-020-0628-1

摘要: In this study, the performance of an efficient two-stage methodology which is applied in a damage detection system using a surrogate model of the structure has been investigated. In the first stage, in order to locate the damage accurately, the performance of the modal strain energy based index for using different numbers of natural mode shapes has been evaluated using the confusion matrix. In the second stage, to estimate the damage extent, the sensitivity of most used modal properties due to damage, such as natural frequency and flexibility matrix is compared with the mean normalized modal strain energy (MNMSE) of suspected damaged elements. Moreover, a modal property change vector is evaluated using the group method of data handling (GMDH) network as a surrogate model during damage extent estimation by optimization algorithm; in this part of methodology, the performance of the three popular optimization algorithms including particle swarm optimization (PSO), bat algorithm (BA), and colliding bodies optimization (CBO) is examined and in this regard, root mean square deviation ( ) based on the modal property change vector has been proposed as an objective function. Furthermore, the effect of noise in the measurement of structural responses by the sensors has also been studied. Finally, in order to achieve the most generalized neural network as a surrogate model, GMDH performance is compared with a properly trained cascade feed-forward neural network (CFNN) with log-sigmoid hidden layer transfer function. The results indicate that the accuracy of damage extent estimation is acceptable in the case of integration of PSO and MNMSE. Moreover, the GMDH model is also more efficient and mimics the behavior of the structure slightly better than CFNN model.

关键词: two-stage method     modal strain energy     surrogate model     GMDH     optimization damage detection    

Numerical analysis and experimental investigation of modal properties for the gearbox in wind turbine

Pengxing YI,Peng HUANG,Tielin SHI

《机械工程前沿(英文)》 2016年 第11卷 第4期   页码 388-402 doi: 10.1007/s11465-016-0404-z

摘要:

Wind turbine gearbox (WTG), which functions as an accelerator, ensures the performance and service life of wind turbine systems. This paper examines the distinctive modal properties of WTGs through finite element (FE) and experimental modal analyses. The study is performed in two parts. First, a whole system model is developed to investigate the first 10 modal frequencies and mode shapes of WTG using flexible multi-body modeling techniques. Given the complex structure and operating conditions of WTG, this study applies spring elements to the model and quantifies how the bearings and gear pair interactions affect the dynamic characteristics of WTGs. Second, the FE modal results are validated through experimental modal analyses of a 1.5 WM WTG using the frequency response function method of single point excitation and multi-point response. The natural frequencies from the FE and experimental modal analyses show favorable agreement and reveal that the characteristic frequency of the studied gearbox avoids its eigen-frequency very well.

关键词: wind turbine gearbox     modal analysis     finite element analysis     modal frequency     bearing equivalence    

Experimental and computational validation of a scaled train tunnel model using modal analysis

Janice B. D’SOUZA, Sangarapillai KANAPATHIPILLAI

《机械工程前沿(英文)》 2013年 第8卷 第4期   页码 420-428 doi: 10.1007/s11465-013-0281-7

摘要:

Acoustic engineers are faced with the challenge of minimising reverberation time in their designs so as to contribute to the health and well-being of those traveling by train and those on the platforms. Although the problem is easy to identify, it is not as simple to solve. The acoustical environment of a train tunnel is complex, with a variety of noise contributing factors such as train announcements, speech of commuters, ventilation systems, electrical equipment and wheel and rail noise. As a result, there is some difficulty in modeling the complete acoustic environment with computational or acoustic first principles. In this study, an experimental rig was constructed to model the acoustic behavior within a tunnel. The modal properties for the 300 Hz to 1500 Hz range, including resonances and mode shapes were identified and were shown to successfully correspond to theoretical results and a computational model created in COMSOL using Finite Element Analysis.

关键词: reverberation time     acoustic environment     modal properties     resonances    

Variational mode decomposition based modal parameter identification in civil engineering

Mingjie ZHANG, Fuyou XU

《结构与土木工程前沿(英文)》 2019年 第13卷 第5期   页码 1082-1094 doi: 10.1007/s11709-019-0537-3

摘要: An out-put only modal parameter identification method based on variational mode decomposition (VMD) is developed for civil structure identifications. The recently developed VMD technique is utilized to decompose the free decay response (FDR) of a structure into to modal responses. A novel procedure is developed to calculate the instantaneous modal frequencies and instantaneous modal damping ratios. The proposed identification method can straightforwardly extract the mode shape vectors using the modal responses extracted from the FDRs at all available sensors on the structure. A series of numerical and experimental case studies are conducted to demonstrate the efficiency and highlight the superiority of the proposed method in modal parameter identification using both free vibration and ambient vibration data. The results of the present method are compared with those of the empirical mode decomposition-based method, and the superiorities of the present method are verified. The proposed method is proved to be efficient and accurate in modal parameter identification for both linear and nonlinear civil structures, including structures with closely spaced modes, sudden modal parameter variation, and amplitude-dependent modal parameters, etc.

关键词: modal parameter identification     variational mode decomposition     civil structure     nonlinear system     closely spaced modes    

液压挖掘机工作装置的动力特性修改研究

杨为,冯培恩,秦大同

《中国工程科学》 2005年 第7卷 第9期   页码 30-33

摘要:

为提高液压挖掘机工作装置动态性能的优化效率,在对该结构进行试验模态研究的基础上,用双模态空间动力修改方法进行了动力特性修改研究,研究结果表明:质量修改对该结构的1阶、2阶固有频率和阻尼比有显著影响,对其他阶结构动态特性的影响很小;刚度修改对该结构1阶至5阶的固有频率和阻尼比均有明显影响,高阶的固有频率和阻尼比对刚度的变化敏感。所得到的结论揭示了模态参数调整对液压挖掘机工作装置动力特性的影响规律,为提高机械产品的总体质量奠定了基础。

关键词: 双模态空间动力修改法     模态     液压挖掘机     工作装置    

network for damage detection in functionally graded carbon nanotube-reinforced composite plates using modal

《结构与土木工程前沿(英文)》 2021年 第15卷 第6期   页码 1453-1479 doi: 10.1007/s11709-021-0767-z

摘要: This paper proposes a new Deep Feed-forward Neural Network (DFNN) approach for damage detection in functionally graded carbon nanotube-reinforced composite (FG-CNTRC) plates. In the proposed approach, the DFNN model is developed based on a data set containing 20 000 samples of damage scenarios, obtained via finite element (FE) simulation, of the FG-CNTRC plates. The elemental modal kinetic energy (MKE) values, calculated from natural frequencies and translational nodal displacements of the structures, are utilized as input of the DFNN model while the damage locations and corresponding severities are considered as output. The state-of-the art Exponential Linear Units (ELU) activation function and the Adamax algorithm are employed to train the DFNN model. Additionally, in order to enhance the performance of the DFNN model, the mini-batch and early-stopping techniques are applied to the training process. A trial-and-error procedure is implemented to determine suitable parameters of the network such as the number of hidden layers and the number of neurons in each layer. The accuracy and capability of the proposed DFNN model are illustrated through two distinct configurations of the CNT-fibers constituting the FG-CNTRC plates including uniform distribution (UD) and functionally graded-V distribution (FG-VD). Furthermore, the performance and stability of the DFNN model with the consideration of noise effects on the input data are also investigated. Obtained results indicate that the proposed DFNN model is able to give sufficiently accurate damage detection outcomes for the FG-CNTRC plates for both cases of noise-free and noise-influenced data.

关键词: damage detection     deep feed-forward neural networks     functionally graded carbon nanotube-reinforced composite plates     modal kinetic energy    

标题 作者 时间 类型 操作

Experimental study of structural damage identification based on modal parameters and decay ratio of acceleration

Zhigen WU, Guohua LIU, Zihua ZHANG

期刊论文

Approximation of structural damping and input excitation force

Mohammad SALAVATI

期刊论文

Identification of structural parameters and boundary conditions using a minimum number of measurement

Ali KARIMPOUR, Salam RAHMATALLA

期刊论文

Comprehensive analysis of the influence of structural and dynamic parameters on the accuracy of nano-precision

Chengyuan LIANG, Fang YUAN, Xuedong CHEN, Wei JIANG, Lizhan ZENG, Xin LUO

期刊论文

Stress-strain relationship with soil structural parameters of collapse loess

SHAO Shengjun, LONG Jiyong, YU Qinggao

期刊论文

Continuous dynamic monitoring of a centenary iron bridge for structural modification assessment

Carmelo GENTILE,Antonella SAISI

期刊论文

Effects of operational and structural parameters on cell voltage of industrial magnesium electrolysis

Ze Sun,Chenglin Liu,Guimin Lu,Xingfu Song,Jianguo Yu

期刊论文

Multidisciplinary co-design optimization of structural and control parameters for bucket wheel reclaimer

Yongliang YUAN, Liye LV, Shuo WANG, Xueguan SONG

期刊论文

Multi-objective genetic algorithms based structural optimization and experimental investigation of the

Pengxing YI,Lijian DONG,Tielin SHI

期刊论文

An efficient two-stage approach for structural damage detection using meta-heuristic algorithms and group

Hamed FATHNEJAT, Behrouz AHMADI-NEDUSHAN

期刊论文

Numerical analysis and experimental investigation of modal properties for the gearbox in wind turbine

Pengxing YI,Peng HUANG,Tielin SHI

期刊论文

Experimental and computational validation of a scaled train tunnel model using modal analysis

Janice B. D’SOUZA, Sangarapillai KANAPATHIPILLAI

期刊论文

Variational mode decomposition based modal parameter identification in civil engineering

Mingjie ZHANG, Fuyou XU

期刊论文

液压挖掘机工作装置的动力特性修改研究

杨为,冯培恩,秦大同

期刊论文

network for damage detection in functionally graded carbon nanotube-reinforced composite plates using modal

期刊论文